TECHSEM

Comparison of Pressure an	d Solder Contact Modules
---------------------------	--------------------------

	Pressure Contact Module	Solder Contact Module
Brief	The used semiconductor chips are normally	The used chips are normally square chips fabricated
	round chips fabricated with Mesa process. The	with Planar process. The electrical connection
	electrodes, chips, DBC and ground plate are	between the components is realized by aluminum
	directly stacked and fastened by using screws	bonding wires. The chips, DBC and ground plate are
	and elastic plates.	connected by vacuum or reflow soldering.
Reserve	Can be very high, such as 6500V.	Limited to 2200V because of the bottleneck of
Voltage		Planar process.
Forward	Can be very high, such as 1200A.	Difficult to break 200A (single chip area can not be
Current		too large).
Voltage	Due to many components and contact surfaces	Low and stable.
Drop	in the module, it can easily cause additional	
	voltage drop and instability related.	
Thermal	Very low.	Low.
Resistance		
Overload	Very good because the effective electrical	Good.
Current	contact surface is bigger and the mechanical	
	stress and the thermal expansion stress is	
	smaller.	
Operating	High because of low components inductance.	Ordinary.
Frequency		
Reliability	Better.	Good (no advantage due to lower fatigue resistance
		and overload current).
Weight	Heavier due to many parts.	Light due to fewer parts.
Cost	Higher.	Lower (fewer parts, process time period shorter,
		more suitable for automatic and mass production).
Special	The contact surface between the components	The reliability may be affected by the lower fatigue
Attention	must be clean and the contact must be tight,	resistance and the different thermal expansion
	otherwise its superiority cannot be fully	coefficients of materials.
	reflected.	